Roll No.							•	Total	No.	of	Pages	:	03

Total No. of Questions : 09

B.Tech.(AE) (Sem.-5th) NUMERICAL METHODS IN SIMULATION ENGINEERING Subject Code : AE-309

Paper ID : [A0717]

Time : 3 Hrs.

Max. Marks : 60

INSTRUCTION TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students has to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students has to attempt any TWO questions.

SECTION-A

l. Answer briefly :

- a. Find the relative error in the product of approximate numbers 8.6 and 34.359.
- b. Describe the Newton Raphson method geometrically.
- c. Perform the iteration method to find the root of the equation

 $5x^3 - 20x + 3 = 0$, starting with initial approximation 0.5.

- d. State the convergence condition for Gauss-Seidal method.
- e. Prove that $\Delta^3 y_2 = \nabla^3 y_5$.

f. Evaluate I = $\int_{0}^{1} \frac{dx}{1+x}$, using Trapezoidal formula rule with eight equal

subinterval.

g. Apply Euler's method to find the values y(0.05) and y(0.1) for the

initial value problem
$$\frac{dy}{dx} = x^2 + y^2$$
; $y(0) = 1$.

www.a2zpapers.com

www.a2zpapers.com

Download free old Question papers gndu, ptu hp board, punjab board

- h. Describe various aspects of the simulation language GPSS.
- i. How System, Model and Simulation are related to each other?
- j. Explain Monte Carlo evaluation of π .

SECTION-B

- 2. a) If $u = \frac{4x^2y^3}{z^4}$ and error in x, y, z be 0.001, compute the relative maximum error in u, when x = y = z = 1.
 - b) Use Regula Falsi method to compute the root of the equation $x^3 + 2x 2 = 0$ in (0, 1), correct to two decimal places.
- 3. Find the solution of following linear system of equations correct to two decimal places with the help of Gauss-Seidal method, starting with (0,0,0) initial approximations.

$$4x_1 - x_2 + 3x_3 = 8$$

$$x_1 + 3x_2 - x_3 = -3$$

$$-2x_1 + x_2 - 3x_3 = -6$$

4. a) The Population (in thousands) of a town in the decimal census was as given below.

Estimate the population for the year 1955 using Newton backward difference formula:

Year	1921	1931	1941	1951	1961
Population	46	66	81	93	101

b) Find $\frac{dy}{dx}$ at x = 0.1 from the following table :

ĸ	r	0.1	0.2	0.3	0.4		
J	,	0.9975	0.9900	0.9776	0.9604		

5. Apply Runga Kutta method of order four with step size 0.1 to find the value of y (0.1) for the following initial value problem $\frac{dy}{dx} = x + y^2$; y(0) = 1.

www.a2zpapers.com

Download free old Question papers gndu, ptu hp board, punjab board

- 6. a) Explain different types of queuing models with examples.
 - b) Suppose we have a dairy farm whose daily milk yield varies randomly. We wish to estimate the average value of its daily yield within \pm 40 litres of its true average yield with a confidence level of 95%. The standard deviation of the daily yields has been estimated to be 200 liters. For how many days must we measure the daily yield of the dairy farm?

SECTION-C

- 7. a) Find the roots of the equation $x^3 2x^2 5x + 6 + 0$ correct up to two decimal places by Graeffe's root squaring method.
 - b) Using Lagrange's interpolation formula, find the value of sin $\left(\frac{\pi}{6}\right)$

from the following set of data points

x	0	$\pi/4$	$\pi/2$
sin <i>x</i>	0	0.70711	1.0

Also estimate the error limit in the solution.

- 8. a) Determine the largest eigen value and eigen vector of A = $\begin{bmatrix} 0 & 2 & 4 \\ 1 & 1 & -2 \\ -2 & 0 & 5 \end{bmatrix}$.
 - b) Evaluate the integral $\int_{1}^{2} \frac{2x}{1+x^4} dx$ using Gauss Legendre's 2 and

3-points formula.

9. a) Using matrix partition method, find the inverse of the matrix

$$A = \begin{bmatrix} 3 & 3 & 4 \\ 2 & 1 & 1 \\ 1 & 3 & 5 \end{bmatrix} \text{ and hence find the solution of}$$
$$3x_1 + 3x_2 + 4x_3 = 5$$
$$2x_1 + x_2 + x_3 = 7$$
$$x_1 + 3x_2 + 5x_3 = 6$$

b) Draw and explain the flow chart for next-event time-advance approach.